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Abstract: Complex multiple seasonality is an important emerging challenge in time series forecasting. In this

paper, we propose models under a framework to forecast such time series. The framework segregates the task into two

stages. In the first stage, the time series is aggregated and existing time series models such as regression, Box-Jenkins or

TBATS, are used to fit this lower frequency data. In the second stage, additive or multiplicative seasonality at the higher

frequency levels may be estimated using classical, or function-based methods. Finally, the estimates from the two stages

are combined. Detailed illustration is provided via energy load data in New York, collected at five-minute intervals. The

results are encouraging in terms of computational speed and forecast accuracy as compared to available alternatives.
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1 Introduction

In many contexts, e.g. energy load or demand, mobile network usage, data is recorded very frequently – at times,
after every minute or every five minutes. Such data may exhibit not only annual and weekly seasonality but also
within day and within hour seasonality that are often entangled with each other. Forecasting problems involving
such high frequency time series data with complex multiple levels of seasonality are increasingly drawing the
attention of both the academicians and practitioners (Hyndman and Fan [2015], Au et al. [2011], Livera et al.
[2011], Gould et al. [2008], Soares and Souza [2006], Taylor [2003], among others). There is huge commercial
interest due to the ability to capture data at rapid succession and the potential benefit that can be derived from
successful forecast which leads to judicious resource planning.

Most traditional methods, e.g. Auto Regressive Integrated Moving Average (ARIMA), are not well-suited for
dealing with long seasonal patterns or seasonality at multiple levels (such as within hour, within day, within week
and within year). A relatively new methodology called BATS, and an extension called TBATS [Livera et al.
[2011]], were developed primarily to address such problems. However, in the current implementation, TBATS is
not designed to accommodate covariates. In addition, TBATS has high computational requirements and high
instability in forecast (as seen subsequently in Tables 4 and 10). In this study, we propose a two-stage framework
which can incorporate covariate information, is computationally much faster and yields better forecast accuracy
than TBATS in the examples considered.

The paper is organized as follows. In Section 2, we describe the two-stage framework. Next, in Section 3, we
demonstrate the implementation of the two-stage framework on New York energy load data, the primary case
study that motivated this research. Further, this section presents the performance of the two-stage framework
and compares it with TBATS. In Section 4, we select a couple of variations of the two-stage framework and
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compare their forecast accuracies with that of TBATS recursively with increase in the model period. In Section
5, we discuss various implementation aspects of the proposed two-stage methods. Specifically, in Section 5.1, we
comment on model selection criteria that combines lack-of-fit with model complexity. In Section 5.2, we exhibit
different choices in the level of separation between the two stages. In Section 5.3, we show results of forecast
combinations on the New York energy load data. In Section 5.4, we explore the performance of the two-stage
framework on another dataset. In Section 5.5, we narrate a few possible variations of the methods used in the
two-stage framework. Finally, we wrap up with a summary in Section 6 and briefly describe future research.

2 The Two-Stage Framework

In the classical decomposition model, the time series Y to be modeled or forecast, is viewed as:

Y = T + S + ε or Y = T · S · ε, (1)

depending on additive or multiplicative model, where T represents the trend or the long-term direction, S
represents the seasonality or a pattern which repeats periodically, and ε represents the error which is random.

In this article, we study time series problems where the seasonality is not of a simple single periodicity, but
is complex having multiple levels. The seasonality may be represented through Sk, k = 1, ...,m, if there are
m-levels of seasonality in the time series. For example, when m = 4, S1 could be the annual seasonality (pattern
repeating every year), S2 could be the weekly seasonality (pattern repeating every seven days), S3 could be the
daily seasonality (period equal to 24 hours), and finally S4 could be the within-hour seasonality (period equal
to one hour). Electricity consumption, gasoline consumption, and mobile usage are a few common examples of
time series data that may similarly exhibit strong seasonality at multiple levels.

The two-stage framework proposed in this paper is inspired by (1), and separates the modeling of the time
series into two stages – low and high frequency time series components. The final model in the two-stage additive
framework looks like:

Y = Ylow + Shigh + ε, (2)

while the same under a multiplicative framework is:

Y = Ylow × Shigh × ε. (3)

Here Ylow represents the time series that incorporates seasonality at the low frequencies. The observed values
of Ylow may be obtained by aggregating the original time series at a suitable level to be determined by the
analyst. All possible time series models should be tried in the first stage in order to fit Ylow. Shigh represents the
seasonality at higher frequencies, possibly at multiple levels, but all beyond the determined threshold level of
separation. Seasonality at high frequencies, Shigh, is then estimated in the second stage. Finally, the two stages
are combined to yield an eventual fit or forecast, as explained in Figure 1.
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Figure 1: Proposed Two-stage Framework

As an illustration, let us consider a time series data, recorded every minute, and having four-level seasonality.
Let Yijkl denote the data corresponding to i-th week, j-th day of the week, k-th hour of the day, and l-th minute
of the day, with i = 1, . . . , I; j = 1, . . . , J = 7; k = 1, . . . ,K = 24; and l = 1, . . . , L = 60. Let us, as an illustration
of the two-stage framework, group the daily and hourly seasonality as high-frequency and group the weekly and
annual seasonality as low-frequency. (Note that a modeler may alternatively consider separation of high vis-à-vis
low frequency at the hourly level or at the weekly level. In the former case, only the within-hour seasonality
is treated as high-frequency, while in the latter only the annual seasonality is treated as low-frequency. This is
further discussed in Section 5.2.)

Consequently, in the first stage, we consider various models for

Ylow = Ȳij·· =
1

24× 60

24∑
k=1

60∑
l=1

Yijkl

that takes into account, among other factors, also weekly and annual seasonality. For example, in the regression
framework, the weekly seasonality may be accounted by considering the dummy variables corresponding to (six)
different days of the week (other than, say, Sunday). The various models that can and should be tried are
discussed with specific illustrations in Section 3.

In the second stage, we estimate seasonality from the high frequency time series. Seasonality can be additive
or multiplicative. Further, the additive or multiplicative seasonality is estimated using either the classical
decomposition type method or function-based methods. A general schematic diagram of the second stage is
provided in Figure 2.
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Figure 2: Seasonality Estimation in Stage 2: Two-Stage Framework

Finally, we combine Stage 1 and Stage 2 to arrive at the model.
We next describe the estimation of seasonality at higher frequency (Stage 2) using two alternative approaches.

Classical estimation of high-frequency seasonality

Going back to the example where data (Yijkl) is recorded every minute and has a four-level seasonality, in the
second stage of accounting for high-frequency seasonality, we need to estimate daily and within-hour seasonality.
In order to estimate the within-hour additive seasonality, ŜA,hour, we first obtain the deviation of per-minute
data Yijkl from the hourly average Ȳijk· = 1

60

∑60
l=1 Yijkl. We then average across weeks and days to get the

within-hour seasonality; e.g. the additive seasonality for the l-th minute of the k-th hour of a day is computed
as:

ŜA,hour
kl =

1

7I

I∑
i=1

7∑
j=1

(
Yijkl − Ȳijk·

)
. (4)

Similarly, to obtain the effect of the different hours of the day, we use the deviation of average hourly data from
that of the daily average:

ŜA,day
k =

1

7I

I∑
i=1

7∑
j=1

(
Ȳijk· − Ȳij··

)
. (5)

For the additive model (2), Shigh is estimated by the classical method through Ŝhigh which is the sum of (4)
and (5), over suitable indices.

To find the multiplicative hourly and daily seasonality, instead of the deviations in equations (4) and (5), we
consider the ratios:

ŜM,hour
kl =

1

7I

I∑
i=1

7∑
j=1

(
Yijkl
Ȳijk·

)
. (6)

ŜM,day
k =

1

7I

I∑
i=1

7∑
j=1

(
Ȳijk·
Ȳij··

)
. (7)

For the multiplicative model (2), Shigh is estimated by the classical method through Ŝhigh which is the product
of (6) and (7), over suitable indices.

The summations in (4) – (7) can be modified by carrying them out separately for different days of the week,
or separately for weekdays and weekends, or for a multitude of other combinations. This may be dictated in part
by the volume of data available, and in part by the assumption of the modeler regarding presence or absence of
interaction between low-frequency and high-frequency seasonality. Objective model selection criteria may also
be used in arriving at a choice. In our case study with New York energy load data, which is a very large data
set, we find it beneficial to treat each weekday as different, even though there is a reasonably strong case for
clubbing indices for weekdays together.

4



Function-based estimation of high-frequency seasonality

Note that, even if there are multiple levels of high frequency, these would typically be multiples of each other
and hence in this approach, all the higher level frequencies may be integrated into a single high frequency. For
example, with one minute frequency data separated at the daily level, both the within-hour and within-day
seasonalities may be combined into a single seasonality of frequency equal to 24× 60 entries.

In the aforementioned classical method of estimating additive/multiplicative seasonality, the number of pa-
rameters to be estimated is large. In the context of data collected at one-minute frequency data, we need
24 hourly values and 24 × 60 minute-level within-hour seasonality values to be estimated. Model prudence is
desirable and simpler models are rewarded by model selection criteria such as AIC or BIC.

As an alternative, we propose to estimate the seasonality using special functions such as polynomial or
trigonometric functions. In the following, we describe a polynomial-based estimation of high-frequency season-
ality. Estimation based on trigonometric function is outlined in Section 5.5.2.

We start with the adjusted or residual data from stage 1, i.e. Ỹ = Y − Ylow or Ỹ = Y
Ylow

, depending on

additive or multiplicative model (2) or (3). As per our model, Ỹ consists essentially of high-frequency seasonality
of period upto the threshold separating the high and low frequencies; this is one day in our running example.
Let us consider a re-parametrization, if necessary, of the time horizon so that t = 1 unit refers to the time period
separating high and low frequencies; this would be one day in our illustration. Let t̃ be equal to t− [t] (i.e. t̃ = t
mod 1), and hence polynomial seasonality of degree k, refers to the model:

Ỹt = α0 + α1t̃+ . . .+ αk t̃
k + εt; (8)

where εt is the usual regression residual and α’s are the regression coefficients. However, periodicity due to
(continuous form of functional) seasonality requires

E(Ỹ0) = lim
t→1

E(Ỹt)⇒ α0 =

k∑
i=0

αi ⇔
k∑

i=1

αi = 0⇔ αk = −
k−1∑
i=1

αi.

Hence, it would be equivalent, and more convenient to run an unconstrained multiple regression model:

Ỹt = α0 + α1U1 + . . .+ αk−1Uk−1 + εt, (9)

with
Ui = t̃i − t̃k, i = 1, . . . , k − 1. (10)

The choice of k can be determined by model selection criteria.
In the next section, we demonstrate specific implementations of the proposed two-stage method in a case

study on the New York energy load data set. In particular, we also examine how this framework can be leveraged
to obtain better forecasts than comparable methods.

3 Illustration of the Two-Stage Framework: Primary Case Study

We demonstrate the new two-stage framework with a case study on energy load data from New York that is
downloaded from [NYISO, 2014].

3.1 New York Energy Load Data

The data reflects the (spot) energy load recorded at five-minute (frequency) intervals. In addition to the electricity
load, four weather-related variables (maximum and minimum dry and wet bulb temperature) are available, which
are recorded daily. For the study, we consider September 5, 2008 – December 31, 2013 as the model period and
January 1, 2014 – December 31, 2014 as the hold-out or validation period. The starting date for the model
period is dictated by the availability of the weather variables.

A visual analysis of the data establishes strong complex multiple levels of seasonality. We discern four levels
of seasonality, namely, annual, weekly, daily, and hourly. A small but illustrative set of diagrams is provided in
Figures 3 – 6 to demonstrate this. Figure 3 plots the energy load data for four years from 2009 to 2012 and it is
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evident that the summer months from June to September tend to see higher usage of electricity than the other
months.

Figure 3: Sample New York Electricity Load Data Exhibiting Annual Seasonality

Next we zoom into weekly data. Picking three weeks in the year 2010, we again see strong seasonality, i.e.
lower electricity usage during the weekend than on weekdays.

Figure 4: Sample New York Electricity Load Data Exhibiting Weekly Seasonality

Further zooming into daily usage, we compare the load on a couple of Mondays and Tuesdays in June 2011
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and 2013. It is not surprising that all four days show a similar usage pattern. Electricity usage starts climbing
around 7:00 a.m., peaks near noon and begins to decline close to 5:00 p.m.

Figure 5: Sample New York Electricity Load Data Exhibiting Daily Seasonality

Finally, we examine seasonality within the hour. Looking at 8:00 - 9:00 a.m. usage on four consecutive days
in June 2011, we see that all the five-minute blocks in that hour show rising energy usage.

Figure 6: Sample New York Electricity Load Data Exhibiting Within-hour Seasonality
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The above visual inspection confirms complex multiple levels of seasonality in this data set. In order to
forecast such time series we need to perform a thorough and systematic study based on a model that accounts
for such type of complex seasonality.

3.2 Implementation of Two-State Methods for New York Energy Load data

The two-stage framework is implemented in the software environment for statistical computing, R [CoreTeam
[2014]]. For TBATS we use the forecast package in R [Hyndman [2016]].

3.2.1 Stage 1: Low Frequency Modeling

In the first stage, we consider suitable models for daily average load L̄day. The various classes of models considered
towards this are depicted in Figure 7.

Figure 7: Options in Stage 1 : Two-stage Framework

A natural approach is to use a regression framework, as the weekly seasonality can be captured through the
choice of dummy variables corresponding to the days of the week, and we expect to capture a large part of the
annual seasonality through weather-related explanatory variables. However, these explanatory variables may not
be able to fully capture the weekly and annual seasonality. Hence, we also explore using TBATS or ARIMA
on the residuals of the (best-fit) regression. One option towards this is to implement ARIMA with xreg in R.
Typically this would be more efficient than running ARIMA on regression residuals.

Let us dwell on some additional details on the regression. The daily average load is regressed on all relevant
independent variables that may include weather-related variables and dummy variables that account for different
days of the week, or weekday, or other structural differences. Usual model selection procedures are adopted to
arrive at an appropriate list of covariates which have significant impact. Certain non-linear transformation of
variables are also considered; in particular, energy load is found to have quadratic relationship with temperature
variables. Whenever the weather-related variables are available at higher frequency (e.g. hourly), the correspond-
ing daily averages are considered. Model selection of independent variables is then carried out; using change
point analysis we also determine whether the different days of the week have significant impact, or whether
significant difference exists between weekdays and weekend, or between Saturday and Sunday. Subsequently,
non-significant variables are dropped to reduce to the following regression model:

L̄day = β0+β1DayNr+β2Tmax+β3Tmin+β4bmax+β5bmin+β6T
2
max+β7T

2
min+β9b

2
min+β10Dwkday+β11DSat, (11)

where Tmax and Tmin denote maximum and minimum dry bulb temperature respectively, bmax, bmin are the
maximum and minimum wet bulb temperatures respectively, Dwkday is a dummy variable to denote weekday,
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DSat is a dummy variable to denote Saturday and DayNr is the day number to account for linear trend. The
parameter estimates are listed in the last row of Table 17 in the Appendix. A summary of the fit and prediction
of the competing methods to forecast daily average load is provided in Table 1 by reporting mean square error
(MSE), mean absolute deviation (MAD), and mean absolute percentage error (MAPE). The first row corresponds
to the regression model in (11).

Note that L̄day has two levels of seasonality – weekly and annual. ARIMA model, by itself, does not perform
very well, as expected due to the long period of seasonality. ARIMA on the regression residual also did not
improve the forecast and hence results from these variations have not been reported. The ARIMA with xreg
option, which integrates the regression and ARIMA, performed best both in the model and in the forecast period
and this corresponds to the last row of Table 1.

Next, we implement the TBATS model with three choices of seasonality – weekly, annual or both and the
results are reported in rows 2 – 4. The errors from TBATS (with both weekly and annual seasonality) applied
on the regression residuals are reported in the fifth row.

Table 1: Summary of Forecast Evaluation in Predicting Daily Average
Sl. Model period 2008-13 Hold-out period 2014
No. Method MSE MAD MAPE MSE MAD MAPE
1 Regression as in (11) 101188.2 245.2 4.01% 341266.7 398.2 6.63%
2 TBATS with only weekly seasonality 134842.3 254.1 4.02% 806588 621.4 9.44%
3 TBATS with only annual seasonality 142833.7 279.2 4.44% 1537894 948.9 14.63%
4 TBATS with weekly & annual seasonality 99581.3 213.6 3.39% 667642.9 601.9 10.05%
5 Regression, then TBATS on regression residuals 55940.6 170.6 2.78% 343144.5 375.9 6.20%
6 Yearly seasonal ARIMA with xreg 45055.5 148.3 2.38% 284098 376.6 6.16%

3.2.2 Stage 2: Estimating Seasonality at Higher Frequency

In this step, we use high frequency data or the five-minute energy load data to estimate the multiple levels of
seasonality. As described in Section 2, we broadly use two methods to estimate seasonality — the first is via
a classical decomposition, while the second is by a function-based approach, more specifically in the form a
polynomial function. In either scheme, the seasonality can be additive or multiplicative and consequently the
estimation procedure is adjusted.

In order to estimate seasonality using the classical method, we use (4) - (7). The only difference is that in
this data, the load is recorded every five minutes instead of every minute. In Figure 8, we plot the estimated
daily multiplicative seasonality (corresponding to the different hours of the day) by the classical method. All
the weekdays have almost identical pattern, while there is moderate difference between Sundays and Saturdays.
However weekday patterns are quite different from the weekend.
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Figure 8: Classical Estimate of Multiplicative Daily Seasonality

The estimated within-hour seasonality across days, as estimated by the classical method is shown in Figure
9. Again, the weekend shows a slightly different pattern compared to weekdays.

Figure 9: Classical Estimate of Multiplicative Within-hour Seasonality

In Figure 10, we illustrate a fourth-degree polynomial fit that is used to estimate the within-day seasonality.
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Figure 10: Polynomial Estimate of Multiplicative Daily Seasonality

The multiplicative seasonality estimated by classical and polynomial methods, along with the adjusted data
Ỹ = Y

Ŷlow
, is shown in Figure 11. The plot shows the seasonality estimated for one week of data along with load

data, adjusted by daily average.

Figure 11: Multiplicative Seasonality Estimated Using Classical and Polynomial Method
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The plots corresponding to the additive models are largely similar to the multiplicative ones and hence
omitted for brevity.

3.2.3 Combining Two Stages and Model/Forecast Comparison

In the first stage, we model the daily average load Ylow = L̄day and come up with a suitable estimate Ŷlow, based
on model selected in this first stage (viz., best regression or ARIMA with xreg, etc). Daily seasonality is then
estimated from the adjusted data Ỹ by classical or polynomial-based method and the two stages are combined
to yield final fit or forecast. As an illustration, consider predicting load for March 3 (Tuesday), 2014 at 6:15 a.m.
using regression (11) and classical additive seasonality. Based on the daily average load, the forecasted daily
average load turns out to be 7155.87. Now from the adjusted data Ỹ = Y − Ylow, the additive seasonality index
for this block is found to be -1020.34, which is actually the sum of SA,day

7,Tue = −899.86, the seventh hour effect for

a Tuesday and SA,hour
74 = −120.48, the block effect for the fourth block of the seventh hour of a Tuesday. Thus,

the eventual forecast for this period is 7155.87 − 1020.34 = 6135.53 (actual observation is 6020.9). If on the
other hand, the polynomial-based multiplicative seasonality estimate is used along with regression, the seasonal
estimate of this block would be 0.8561, leading to a predicted value of 7155.87× 0.8561 = 6126.14.

We now compare all the methods with specific focus on how the different models under two-stage framework
fare as compared to the TBATS model with four levels of seasonality – hourly, daily, weekly and annual sea-
sonality. Table 2 summarizes the performance of the key better-performing methods in fitting at five-minute
intervals on the training/model period and in the hold-out period.

Table 2: Summary of Different Models in Predicting Load at Five-minute Intervals
Model period Hold-out period

Method Stage 1 Stage 2 MSE MAD MAPE MSE MAD MAPE

M1

Regression

Classical additive 146252.1 288.9 4.80% 398837.8 438.9 7.40%
M2 Classical multiplicative 136952.4 277.3 4.58% 394285.7 425.2 7.09%
M3 Polynomial additive 176814.9 327.7 5.43% 423940.1 463.5 7.82%
M4 Polynomial multiplicative 165550.8 313.8 5.21% 417880.3 449.8 7.54%

M5

2 level TBATS

Classical additive 144644.7 260.1 4.12% 725218.1 627.7 10.60%
M6 Classical multiplicative 141849.8 254.0 3.99% 725928.9 621.1 10.40%
M7 Polynomial additive 175208.0 307.0 4.90% 750316.3 645.7 10.95%
M8 Polynomial multiplicative 170175.2 301.7 4.84% 748615.4 640.9 10.80%

M9

TBATS on regression residual

Classical additive 101004.4 231.2 3.80% 400715.6 422.2 7.05%
M10 Classical multiplicative 93030.6 219.1 3.56% 397679.4 406.5 6.70%
M11 Polynomial additive 131567.3 279.9 4.60% 425817.9 451.5 7.55%
M12 Polynomial multiplicative 121503.8 268.5 4.43% 421159.3 438.1 7.28%

M13

ARIMA with xreg

Classical additive 90119.2 211.9 3.41% 341668.0 409.9 6.79%
M14 Classical multiplicative 82809.9 201.0 3.23% 332561.8 401.2 6.61%
M15 Polynomial additive 120682.2 265.0 4.30% 366771.4 437.7 7.22%
M16 Polynomial multiplicative 111355.1 255.0 4.17% 357058.3 426.8 7.03%

M17 4 level TBATS 485.14 16.7 0.28% 707423.9 714.6 12.47%

Table 2 shows the utility of proposed seasonality estimation within a day (high frequency) and integrating
it with daily average (low frequency) forecast based on TBATS, or regression, or ARIMA; this is the main
idea behind the two-stage framework. Method M14 works the best. The TBATS model with all four levels
of seasonality (M17) is not only computationally intensive, but it runs into the possible danger of over-fitting.
Indeed, though it provides an superlative fit during the model period, its performance is worse (compared to
several of the competing methods) during the hold-out period.

4 Recursive Forecast on New York Data

In Section 3, we observed that the two-stage framework performed favourably when compared with TBATS in
terms of the forecast accuracy using data available for five years. It is fair to ask if this observation remains
valid with change in model and/or forecast period. At any rate, a practitioner is often posed with the challenge
of determining how much data is enough to place confidence in its forecast. Therefore, we consider recursive
forecasts, where we first forecast using only (a little over) one year long data for modeling and then progressively
increase the model period by three months. We also consider short, medium and long hold-out periods, by
considering forecast for the next day, next week, 4-weeks (approximately a month), 13-weeks (approximately a
quarter) and 52-weeks (approximately a year).

The error in the recursive fit for TBATS with four levels of seasonality, is provided in Table 3. The first
observation in Table 3 is that the model period errors are startlingly small. A MAPE of 0.28% implies an almost
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perfect fit. However, the 1-day and 1-week forecast errors are occasionally large and fluctuate widely across the
different model periods. Large variations in a single day forecast (or even 1-week) are perhaps to be expected,
yet MAPE of 34% (for the 1-week forecast made on 01-Jul-10) is cause for concern.

Table 3: Recursive Forecast evaluation for TBATS: Model Period and Short Horizon Forecast
Forecast Model period 1 day forecast 1 week forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 508.0 17.0 0.28% 411870.2 523.4 8.84% 776429.4 795.8 14.20%
01-Jan-10 516.4 17.2 0.29% 1363993.4 1042.3 19.25% 463520.8 545.6 9.44%
01-Apr-10 511.3 17.1 0.29% 1063118.6 998.5 18.26% 1324121.7 1070.1 19.49%
01-Jul-10 514.3 17.2 0.29% 835533.9 833.3 12.24% 11242330.2 2839.8 34.30%
01-Oct-10 495.9 16.9 0.28% 690406.0 653.6 9.97% 1680012.9 1235.9 22.64%
01-Jan-11 477.8 16.6 0.27% 418824.9 555.8 10.54% 191688.4 383.2 6.72%
01-Apr-11 484.6 16.7 0.28% 88895.1 264.1 4.32% 51724.2 188.5 3.43%
01-Jul-11 485.2 16.7 0.28% 51307.8 183.3 2.49% 400226.2 497.3 6.46%
01-Oct-11 498.8 16.9 0.28% 100003.3 269.0 4.92% 280771.1 500.2 9.50%
01-Jan-12 483.9 16.7 0.28% 712932.0 738.7 14.88% 563984.1 640.6 11.57%
01-Apr-12 480.3 16.6 0.28% 212723.1 365.0 7.40% 425973.1 573.5 10.88%
01-Jul-12 475.7 16.5 0.28% 3105969.0 1550.4 18.73% 3129791.2 1665.4 19.79%
01-Oct-12 486.4 16.7 0.27% 207146.7 369.3 6.01% 415712.8 575.5 10.07%
01-Jan-13 489.4 16.7 0.28% 1294129.2 1011.6 18.82% 1377382.4 1054.0 18.70%
01-Apr-13 488.1 16.7 0.28% 138162.1 331.0 5.81% 218413.9 411.7 7.66%
01-Jul-13 488.8 16.7 0.28% 16042.9 115.3 1.48% 336698.2 435.1 5.43%
01-Oct-13 480.6 16.6 0.27% 560158.8 647.9 9.81% 1032525.2 929.7 14.39%
01-Jan-14 485.1 16.7 0.28% 1456764.5 1052.4 18.81% 330967.2 426.1 7.19%

Mean 491.7 16.8 0.28% 707110.1 639.2 10.70% 1346792.9 820.4 12.88%
Std. Dev. 12.8 0.2 0.00% 763294.4 383.7 6.11% 2579493.5 622.7 7.68%

Table 4: Recursive Forecast Evaluation for TBATS: Medium and Long Horizons
Forecast 4 weeks forecast 13 weeks forecast 52 weeks forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 1013868 918.7 16.49% 2353445 1405.9 24.75% 3820479 1742.1 27.04%
01-Jan-10 543562.2 624.8 11.00% 974125.5 851.1 15.33% 1448650 1052.4 18.17%
01-Apr-10 1069644 937.1 17.11% 3091255 1470.0 22.21% 4303097 1851.9 28.55%
01-Jul-10 41085288 5934.9 71.02% 1.99E+08 12840.1 186.83% 2.65E+09 44997.8 778.74%
01-Oct-10 1494019 1175.3 21.61% 1232523 1025.1 18.42% 1201341 950.3 15.66%
01-Jan-11 88205.83 238.4 4.05% 104762.4 265.5 4.64% 361213.9 471.3 7.67%
01-Apr-11 62116.24 196.0 3.58% 536993.5 453.8 6.74% 478524 444.4 6.59%
01-Jul-11 1501301 951.5 11.14% 740675.6 648.5 8.68% 801327.6 771.5 13.05%
01-Oct-11 153536.4 341.6 6.43% 201377.5 374.1 6.97% 428429.2 517.2 8.53%
01-Jan-12 422858.7 579.0 10.13% 441930.7 593.6 10.65% 630577.5 653.4 11.15%
01-Apr-12 415496.2 571.5 10.76% 799863.7 650.7 10.39% 1075568 739.1 11.33%
01-Jul-12 1945752 1208.9 14.90% 1196185 897.5 11.67% 601043.2 568.8 8.73%
01-Oct-12 1197938 959.9 17.64% 1721923 1126.6 21.46% 1460747 1021.7 17.38%
01-Jan-13 1157233 917.4 16.31% 1486372 1048.8 18.70% 2260339 1282.3 21.82%
01-Apr-13 366810.1 548.8 10.57% 1077692 784.4 12.61% 1459426 825.8 12.36%
01-Jul-13 1106239 872.0 10.81% 1804118 1149.6 17.93% 3103622 1631.3 28.55%
01-Oct-13 335939 435.5 7.41% 231514.2 372.9 6.50% 453747.9 492.4 7.97%
01-Jan-14 280415.8 422.5 7.31% 317541.9 474.3 8.32% 707423.9 714.6 12.47%

Mean 3013345.7 990.8 14.90% 12095019.1 1468.5 22.93% 1.5E+08 3.4E+03 57.54%
Std. Dev. 9517805.4 1271.4 14.85% 46751428.0 2860.0 41.35% 6.2E+08 1.0E+04 180.13%

We examine whether the forecast errors stabilize over longer forecast horizons in Table 4. From Table 4, we
note that forecasts made on 01-Jul-10 have a serious problem. Despite excellent model fitting and good 1-day
forecast (MAPE around 12%), the MAPE exceeds 100% for the 13-week and the 52-week forecast horizons. The
parameters for this model period do not differ significantly from the others in Table 16 in the Appendix, and
do not provide any clues to its poor forecast performance. Forecasts made on some of the other dates also, for
example 01-Oct-09, 01-Apr-10, 01-Jan-13 and 01-Jul-13, yield MAPE greater than 20% in the long-term forecast
horizon (52-weeks). These corresponding forecasts for the short and medium term horizons are also poor. A few
forecasts are good in between, such as the ones made on 01-Apr-11, 01-Jan-11 and 01-Oct-13.

Without a closer look at the coding of the TBATS package, it is difficult to ascertain the reason behind the
poor performance of TBATS in some of the recursive forecasts, while the fit for the model period is excellent.
However, over-fitting the data is plausible and the unreliability of TBATS with four levels of seasonality is a
major concern.

We next study the performance of recursive forecast when a version of the two-stage framework is applied.
The specific form of the two-stage framework that we adopt is M2 (as numbered in Table 2), i.e. ‘best’ regression
(in stage 1) followed by multiplicative seasonal adjustment. The selected regression models are ‘best’ in the sense
of having highest R-square with all significant regression coefficients, based on available data at the corresponding
stage of prediction. The errors in fit for the different forecast horizons are reported in Tables 5 and 6.
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Table 5: Recursive Forecast Evaluation for M2 (two-stage): Model Period and Short Horizon Forecast
Forecast Model period 1 day forecast 1 week forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 116697.5 258.1 4.25% 12183.7 85.1 1.76% 101249.5 262.8 4.99%
01-Jan-10 109873.0 248.8 4.13% 409203.7 549.0 10.33% 126920.1 285.5 4.95%
01-Apr-10 102799.1 238.5 3.97% 36116.9 169.3 2.98% 95104.2 261.3 4.86%
01-Jul-10 109928.7 248.0 4.12% 38271.7 166.8 2.57% 442555.4 520.1 6.54%
01-Oct-10 129503.0 273.9 4.45% 220575.1 423.4 6.78% 163822.7 363.7 6.64%
01-Jan-11 126890.5 269.1 4.40% 69560.7 237.0 4.66% 42528.8 166.8 2.98%
01-Apr-11 123317.0 265.6 4.35% 35456.9 172.1 2.97% 38630.5 160.1 3.00%
01-Jul-11 126505.0 269.5 4.43% 35291.7 162.3 2.39% 290855.9 387.3 5.43%
01-Oct-11 132603.7 275.9 4.48% 21729.7 96.2 1.78% 83297.9 226.9 4.30%
01-Jan-12 128719.5 271.0 4.43% 40804.3 176.8 3.64% 266723.8 410.2 7.06%
01-Apr-12 124614.6 265.7 4.36% 13064.4 98.8 2.02% 30323.1 131.3 2.41%
01-Jul-12 124370.0 265.1 4.36% 594232.1 720.5 8.88% 474050.2 578.9 7.11%
01-Oct-12 130168.0 272.8 4.45% 131428.0 354.4 6.63% 209937.5 388.1 6.68%
01-Jan-13 135074.5 274.0 4.52% 645929.5 662.5 12.54% 161379.4 298.5 5.45%
01-Apr-13 134055.3 273.3 4.52% 27314.3 123.7 2.13% 27029.1 139.2 2.61%
01-Jul-13 134773.3 274.5 4.55% 126573.2 314.5 4.35% 246493.2 413.9 5.23%
01-Oct-13 137757.9 278.5 4.58% 220236.8 428.4 7.88% 116977.0 283.9 4.87%
01-Jan-14 136952.1 277.3 4.58% 987659.5 844.3 15.18% 1045515.5 827.8 13.37%

Mean 125811.3 266.7 4.39% 203646.2 321.4 5.53% 220188.5 339.3 5.47%
Std. Dev. 10054.0 11.3 0.17% 277650.7 235.4 4.02% 244398.2 175.2 2.47%

Table 6: Recursive Forecast Evaluation for M2 (two-stage): Medium and Long Horizons
Forecast 4 week forecast 13 week forecast 52week forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 72629.6 214.1 3.95% 114979.0 267.4 4.88% 235376.5 366.1 5.54%
01-Jan-10 82738.9 236.2 4.07% 71900.7 214.7 3.83% 186850.4 311.3 4.73%
01-Apr-10 50303.0 180.4 3.40% 176422.5 308.9 4.84% 191815.2 309.8 4.67%
01-Jul-10 539650.4 623.5 7.52% 342014.6 460.9 6.43% 170139.4 303.6 4.76%
01-Oct-10 123343.8 298.3 5.51% 102648.1 243.1 4.20% 153915.0 294.3 4.81%
01-Jan-11 162181.7 272.2 4.46% 100838.8 232.2 3.91% 139158.0 275.6 4.47%
01-Apr-11 52521.8 185.8 3.47% 169148.6 319.1 5.20% 135082.1 270.6 4.43%
01-Jul-11 378393.8 461.7 5.65% 214822.5 344.1 4.79% 124558.7 262.9 4.31%
01-Oct-11 126946.0 297.4 5.51% 80539.1 220.6 3.93% 122929.4 266.5 4.38%
01-Jan-12 134951.3 271.8 4.66% 70838.3 198.6 3.52% 160696.4 287.8 4.89%
01-Apr-12 44805.7 169.2 3.20% 135472.7 293.8 4.78% 170378.3 296.2 5.01%
01-Jul-12 345201.5 472.4 5.91% 226493.1 367.8 5.20% 175809.9 303.2 5.07%
01-Oct-12 131319.3 303.5 5.59% 219018.6 305.6 5.44% 171826.9 302.8 5.17%
01-Jan-13 224418.9 342.7 5.81% 123238.3 265.8 4.68% 146834.5 290.7 4.79%
01-Apr-13 40617.7 155.9 2.96% 151207.8 295.1 4.90% 185945.2 320.5 5.23%
01-Jul-13 343852.8 484.1 5.96% 202951.2 354.6 5.06% 207483.0 332.4 5.51%
01-Oct-13 121038.6 293.2 5.43% 118801.3 263.5 4.70% 311482.8 381.3 6.46%
01-Jan-14 562690.6 544.7 8.71% 290222.4 385.9 6.17% 394286.1 425.2 7.09%

Mean 196533.6 322.6 5.10% 161753.2 296.8 4.80% 188031.6 311.2 5.07%
Std. Dev. 166686.6 138.3 1.51% 75812.9 67.9 0.76% 67967.4 42.3 0.72%

The performance of our new proposed two-stage framework is very encouraging. Note that while M2 is not
the best performing version in Table 2, it still outperforms TBATS in almost all the recursive forecasts across
all forecast horizons considered (except 4-week 01-Jan-11, 01-Jan-14 and 13-week 01-Jan-11 where the forecasts
are comparable). We also observe that the accuracy in longer horizon forecast is somewhat more stable than
shorter horizon forecast, like one day – this is along expected lines.

We now examine results of another variation of the two-stage framework, M4, in Tables 7 and 8. M4 combines
regression for the first stage and polynomial multiplicative seasonality for the second stage, and is attractive in
model parsimony and forecast performance.

Table 7: Recursive Forecast Evaluation for M4 (two-stage): Model Period and Short Horizon Forecast
Forecast Model period 1 day forecast 1 week forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 146578.0 298.2 4.93% 63333.1 224.0 4.27% 141620.3 322.4 6.13%
01-Jan-10 141414.5 293.4 4.90% 387112.5 521.5 9.66% 160645.1 327.4 5.46%
01-Apr-10 135750.7 287.2 4.80% 69310.8 222.3 4.04% 121400.6 280.4 5.34%
01-Jul-10 141817.1 294.1 4.91% 39487.1 162.4 2.53% 443839.5 522.4 6.55%
01-Oct-10 158613.0 311.9 5.10% 236180.2 447.2 6.94% 197828.5 375.1 6.93%
01-Jan-11 156691.1 309.2 5.09% 67067.6 229.3 4.43% 82153.0 244.2 4.17%
01-Apr-11 154058.6 306.9 5.06% 78723.6 208.6 3.50% 83046.6 239.3 4.35%
01-Jul-11 157061.1 309.5 5.12% 42170.2 166.1 2.53% 286141.7 399.1 5.62%
01-Oct-11 161517.8 312.8 5.11% 31613.2 136.8 2.57% 116640.7 270.6 5.20%
01-Jan-12 158072.5 309.2 5.09% 43184.3 171.3 3.47% 302500.8 430.6 7.39%
01-Apr-12 154538.1 305.8 5.05% 26046.8 132.6 2.62% 66652.2 210.3 3.88%
01-Jul-12 154267.5 305.1 5.05% 596783.9 720.5 8.86% 458637.0 576.6 7.00%
01-Oct-12 158850.0 309.9 5.09% 166580.6 354.5 6.81% 244345.4 401.3 7.06%
01-Jan-13 163879.2 311.5 5.17% 618784.8 624.1 11.74% 191735.0 340.5 6.10%
01-Apr-13 163301.8 311.2 5.18% 74026.3 230.0 4.14% 67311.8 212.6 3.82%
01-Jul-13 163988.7 312.2 5.20% 153469.6 314.6 4.22% 248186.9 411.4 5.14%
01-Oct-13 166132.1 314.5 5.20% 252890.6 428.6 8.08% 136532.8 305.7 5.32%
01-Jan-14 165521.9 313.7 5.21% 959899.3 809.5 14.51% 1068127.0 841.2 13.60%

Mean 155669.7 306.5 5.07% 217036.9 339.1 5.83% 245408.1 372.8 6.06%
Std. Dev. 8889.8 7.9 0.12% 261817.8 209.0 3.50% 236423.7 154.4 2.18%
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Table 8: Recursive Forecast Evaluation for M4 (two-stage): Medium and Long Horizons
Forecast 4 week forecast 13 week forecast 52week forecast
made on MSE MAD MAPE MSE MAD MAPE MSE MAD MAPE

01-Oct-09 113300.8 278.0 5.12% 153685.3 315.8 5.74% 264170.8 398.1 6.06%
01-Jan-10 123932.9 287.7 4.79% 112449.3 271.3 4.72% 214612.1 352.9 5.43%
01-Apr-10 84148.5 239.5 4.55% 200849.8 347.2 5.52% 219255.7 353.1 5.42%
01-Jul-10 543148.5 623.8 7.47% 348256.1 468.6 6.52% 198363.2 341.9 5.42%
01-Oct-10 160161.1 329.6 6.17% 139553.3 294.4 5.06% 182427.8 329.4 5.43%
01-Jan-11 198789.5 319.6 5.19% 141392.2 286.0 4.77% 167403.7 313.0 5.13%
01-Apr-11 88240.8 244.5 4.56% 196758.7 349.3 5.73% 162736.7 310.1 5.14%
01-Jul-11 379517.7 466.2 5.70% 222340.0 352.9 4.92% 152567.3 302.3 5.02%
01-Oct-11 163234.5 338.3 6.34% 116842.8 275.3 4.89% 151139.1 305.5 5.08%
01-Jan-12 172249.8 317.7 5.41% 109466.4 260.3 4.58% 187725.4 324.6 5.55%
01-Apr-12 78579.5 232.5 4.42% 164229.0 325.1 5.36% 197077.8 331.5 5.64%
01-Jul-12 340379.4 473.9 5.90% 234247.5 376.5 5.31% 202475.0 338.2 5.68%
01-Oct-12 168476.6 337.0 6.31% 251188.5 350.7 6.23% 199067.5 337.8 5.78%
01-Jan-13 261034.5 383.4 6.49% 161457.0 308.7 5.37% 174403.7 325.0 5.38%
01-Apr-13 78122.7 230.3 4.33% 179483.4 335.5 5.62% 213327.5 352.3 5.78%
01-Jul-13 347495.7 487.0 5.95% 212434.2 363.2 5.17% 233981.1 361.9 6.02%
01-Oct-13 151289.7 323.0 6.05% 152488.1 304.5 5.40% 337223.7 409.4 6.96%
01-Jan-14 596028.3 571.4 9.12% 328154.1 418.0 6.65% 418784.1 450.2 7.54%

Mean 224896.1 360.2 5.77% 190293.1 333.5 5.42% 215374.6 346.5 5.69%
Std. Dev. 156568.8 117.5 1.19% 68004.8 52.8 0.59% 67168.7 38.7 0.65%

While, in general, the forecast errors for the polynomial multiplicative seasonality are slightly worse when
compared to classical multiplicative seasonality correction, we expect this because the polynomial method of
seasonality estimation uses far fewer parameters when compared to the classical method. The consistency in
forecast as captured through the standard deviation over the various periods is a testimony to the effectiveness
of the method.

5 Discussions on Miscellaneous Aspects

5.1 Model Selection Based on Lack-of-fit and Number of Parameters

So far in this study, the effectiveness of the different methods have been compared in terms of forecast evaluation
criteria such as MSE, MAD and MAPE, computed both during the model or training period as well as the hold-
out or test period. On the basis of these forecast evaluation measures, a few methods in the two-stage framework
proposed in this study are recommended for modeling time-series data with many levels of seasonality. We
reiterate that such recommendations are based on consistent superior performance in the test period (in addition
to model period) for varying horizons. The recommendations however do not take into account model complexity.

As an alternative, penalized likelihood methods such as AIC, BIC or AICC are often preferred as model
selection criteria. However, since a penalized likelihood criteria depends on modeler’s choice of the likelihood,
its fairness as a model selection criterion across vastly different sets of methods is not beyond debate. In this
article, we propose to use a penalized lack-of-fit yardstick ψ defined by:

ψ = n ln(MSE) + 2p, (12)

where p is the total number of parameters in the model and n is the number of data points. Note that (12) is
indeed the AIC criterion corresponding to simple normal likelihood, and by replacing 2 with suitable constants,
we get other equivalent information-based criteria such as BIC and AICC. However, irrespective of the likelihood
presumed or the methods adopted, (12) can be conveniently interpreted in terms of penalized lack-of-fit, with
the first term capturing how well the model explains the data, and the second capturing model complexity. A
convenient trade-off then emerges when model selection is done by minimizing ψ. Computing ψ in (12) is also
very easy, regardless of the complexity of the method, and may be carried out for model period as well as hold-out
period.

Table 9: ψ × 10−6: NY energy load data
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

Model period 6.66 6.62 6.76 6.73 6.65 6.64 6.76 6.740 6.45 6.41 6.60 6.55 6.39 6.34 6.55 6.50 3.46
Forecast period 1.36 1.36 1.36 1.36 1.42 1.42 1.42 1.42 1.36 1.36 1.36 1.36 1.34 1.34 1.35 1.34 1.42
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Figure 12: Comparing Penalized Lack-of-fit ψ: TBATS vs. Two-stage Methods: Recursive Forecast

In Figure 12, we compare ψ for TBATS, M2 and M4 across the model period and three forecast horizons –
1-week, 4-weeks and 52-weeks. We are aware that typically AIC values are not calculated for the forecast period.
However, since all our results seem to indicate that the TBATS method suffers from over-fitting, it is obvious
that the ψ metric will be lower for TBATS in the model period. However, in the forecast period, where the
two-stage framework does a better job of prediction, we see that ψ values are lower in short, medium and long
term horizons. In the 1-week horizon forecast, M2 and TBATS have comparable ψ but M4 is clearly better.
With the 4-week and 52-week forecasts, both M2 and M4 have lower and comparable ψ values. Recall that
both M2 and M4 are not the best two-stage methods in terms of MSE. They were chosen to illustrate better
performance both in terms of MSE and because they are easy to implement. In Table 10, a comparison of the
time time taken for TBATS, M2 and M4 to run is presented. With M2 and M4, forecasts were available in a few
minutes, whereas the standard implementation of TBATS took a few days.

Table 10: Time Taken (in seconds) in Recursive Forecast: TBATS vs. Two-stage Methods

Forecast made on
1-Oct-09 1-Jan-10 1-Apr-10 1-Jul-10 1-Oct-10 1-Jan-11 1-Apr-11 1-Jul-11 1-Oct-11

TBATS 988.9 1290.9 1346.4 976.9 10479.0 20754.2 13539.6 17806.2 17374.1
M2 2.30 2.08 2.34 3.05 3.55 3.68 4.35 4.46 4.76
M4 0.82 1.03 1.11 1.28 1.47 1.64 1.7 1.97 2.16

Forecast made on
1-Jan-12 1-Apr-12 1-Jul-12 1-Oct-12 1-Jan-13 1-Apr-13 1-Jul-13 1-Oct-13 1-Jan-14

TBATS 16064.4 24438.7 28932.8 31996.6 24434.8 32519.6 29625.7 41104.4 41105.1
M2 5.21 5.72 6.13 6.57 7.08 7.81 8.02 8.72 9.04
M4 2.31 2.47 2.65 2.8 2.92 3.11 3.31 3.5 3.72
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5.2 Level of Separation between High and Low Frequencies

In the proposed two-stage framework, the high and low frequency seasonalities are treated differentially. While
the seasonalities (consisting of one or more levels) in the low-frequency are proposed to be modeled using (a
combination of) methods such as regression, ARIMA, and TBATS, the seasonalities in the high-frequency are
estimated via a classical decomposition method or via a function-based method such as polynomial fitting or
trigonometric fitting. Typically, although not as a requirement in all variations, the seasonalities at low and
high frequencies would be assumed to be non-interactive as per the model and this may accordingly play an
important role in deciding the suitable level of separation between the low and high frequencies. Naturally,
errors in forecast and model evaluation, as captured during the model and hold-out periods would also provide
guidance in selecting this suitable level of separation, as also would the criteria such as penalized likelihood or
lack-of-fit, as described in Section 5.1.

For the NY electricity load data, the weekly separation between high and low frequencies, means that Ylow is
load data averaged over the duration of a week. Thus, time series models such as TBATS, ARIMA will model
only annual seasonality in the first stage. The seasonality estimation methods in the second stage capture the
within-hour, within-day and weekly seasonalities. Table 11 shows that the model and forecast period errors are
marginally worse than separation at the daily level.

Table 11: Forecast Evaluation with NY Energy Load: Two Stage Models with Weekly Separation in High/Low
Frequency

Model period Hold-out period
Stage 1 Stage 2 MSE MAD MAPE MSE MAD MAPE

Regression

Classical additive 327845.0 423.3 6.97% 454418.8 488.5 8.28%
Classical multiplicative 320074.8 413.6 6.71% 442567.8 473.1 7.93%
Polynomial additive 244872.3 368.8 5.95% 435310.6 479.9 8.04%

Polynomial multiplicative 233215.6 357.0 5.74% 423514.4 464.7 7.75%

Single level TBATS

Classical additive 378497.9 441.3 7.12% 538165.5 523.5 8.78%
Classical multiplicative 372439.5 432.2 6.89% 526442.9 507.3 8.42%
Polynomial additive 295528.7 387.9 6.10% 519056.6 513.5 8.51%

Polynomial multiplicative 286172.4 382.0 6.03% 507136.4 501.0 8.27%

TBATS on regression residuals

Classical additive 312936.1 403.6 6.60% 440677.5 473.5 7.99%
Classical multiplicative 305903.9 393.4 6.34% 429383.2 457.4 7.64%
Polynomial additive 229959.9 348.4 5.57% 421569.9 464.0 7.73%

Polynomial multiplicative 219239.5 339.2 5.42% 410308.5 449.0 7.45%

ARIMA with xreg

Classical additive 312681.1 405.8 6.65% 519328.0 535.6 9.21%
Classical multiplicative 305119.8 395.3 6.39% 510624.5 523.3 8.94%
Polynomial additive 229708.9 349.9 5.60% 500117.1 529.5 9.05%

Polynomial multiplicative 218455.0 340.2 5.45% 490358.1 518.6 8.83%

Next, we consider separation at the hourly level for the NY energy load data. Here Ylow will be the energy
load data averaged for every hour. Stage 1 models account for within-day, weekly and annual seasonalities. The
TBATS in Table 12 has three levels of seasonality, daily, weekly and annual. Stage 2 estimates the within-hour
seasonalities. We observe in Table 12 that the model period errors improve greatly compared to both daily and
weekly separation. However, the forecast period errors are worse than those of daily separation (Table 2). This
level of separation seems to suffer from the problem of over-fitting.

Table 12: Forecast Evaluation with NY Energy load:Two-stage Models with Hourly Separation in High/Low
Frequency

Model period Hold-out period
Stage 1 Stage 2 MSE MAD MAPE MSE MAD MAPE

Regression

Classical additive 192539.1 334.9 5.65% 427653.7 465.7 7.96%
Classical multiplicative 192552.2 334.9 5.65% 427694.1 465.7 7.96%
Polynomial additive 197328.6 339.8 5.74% 432257.9 469.8 8.03%

Polynomial multiplicative 197150.2 339.7 5.74% 432280.8 469.8 8.03%

3 level TBATS

Classical additive 10109.9 74.0 1.21% 1319803.3 912.6 16.27%
Classical multiplicative 10106.1 73.8 1.21% 1320002.1 912.6 16.26%
Polynomial additive 15290.9 88.7 1.47% 1317013.2 911.7 16.26%

Polynomial multiplicative 15302.8 88.7 1.47% 1316375.4 911.5 16.25%

TBATS on regression residuals

Classical additive 17663.6 78.2 1.34% 433669.6 456.8 7.73%
Classical multiplicative 17665.4 78.3 1.34% 433721.5 456.7 7.73%
Polynomial additive 22846.6 97.1 1.66% 440825.7 463.4 7.85%

Polynomial multiplicative 22833.1 97.0 1.66% 441316.4 463.7 7.85%

ARIMA with xreg

Classical additive 5454.3 51.3 0.85% 739595.3 677.3 11.37%
Classical multiplicative 5451.5 51.3 0.85% 739599.9 677.3 11.37%
Polynomial additive 10718.2 74.9 1.26% 744200.7 679.6 11.41%

Polynomial multiplicative 10720.7 74.9 1.26% 744380.3 679.9 11.42%
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5.3 Forecast Combination

Forecast combination is an established mechanism of further improving forecast performance [Clemen [1989],
Elliott et al. [2006]]. Following this, we try to come up with improved forecast by combining the various methods
listed in Table 2, i.e. M1, . . . , M17 (of which, the first 16 are different variations of the two-stage methods and
M17 represents the 4-level TBATS). We adopt one of the four principles of combining forecasts, viz. (a) simple
average (b) variance-based, i.e. minimizing variance of the combined forecast, (c) basing on ordinary least square
(OLS), and (d) basing on robust regression. Typically, a subset of methods out of these 17, are combined using
these principles. A summary of error evaluation measures from some of these combinations is provided in Table
13.

Table 13: Results from Combining Forecasts: NY Energy Load
Methods Criteria for Model Period Hold-out Period
combined combining MSE MAD MAPE MSE MAD MAPE

M2, M4,M6,M8,M10,M12,M14,M16,M17

Simple 68021.3 191.5 3.11% 349450.2 403.7 6.78%
Variance based 544.2 17.8 0.29% 681780.7 699.8 12.20%

OLS 483.4 16.6 0.28% 703312.3 712.4 12.43%
Robust Reg 483.6 16.6 0.28% 703548.8 712.6 12.43%

M2,M6,M10,M14,M17

Simple 51333.0 159.2 2.56% 350574.4 411.6 6.93%
Variance based 498.8 17.0 0.28% 692496.9 706.1 12.32%

OLS 483.8 16.6 0.28% 703431.6 712.5 12.43%
Robust Reg 483.9 16.6 0.28% 703648.9 712.6 12.43%

M2, M6, M10, M14

Simple 80091.4 198.7 3.20% 350754.0 392.5 6.53%
Variance based 79227.7 197.7 3.18% 338083.4 383.1 6.37%

OLS 78214.5 194.9 3.12% 329798.4 377.7 6.28%
Robust Reg 79255.2 193.5 3.08% 332610.6 379.3 6.31%

M4, M14, M17

Simple 42905.0 154.7 2.54% 347757.4 422.0 7.12%
Variance based 485.4 16.7 0.28% 699298.8 710.0 12.39%

OLS 483.6 16.6 0.28% 703353.7 712.4 12.43%
Robust Reg 483.7 16.6 0.28% 703611.2 712.6 12.43%

M10, M14

Simple 81879.0 203.0 3.28% 327932.2 374.4 6.19%
Variance based 81602.4 202.4 3.27% 326165.4 374.2 6.18%

OLS 80753.4 200.3 3.22% 321984.5 379.0 6.26%
Robust Reg 81106.4 199.8 3.21% 322671.7 384.3 6.34%

We note that typically if TBATS (M17) is one of the constituent forecasts, the performance in the forecast
period continues to be poor while that in the model period is good. We notice a good improvement by considering
variance-based combination of M10 and M14; this results in a reduction of MAPE in the forecast period from
6.70% to a combined 6.18% with negligible change in the MAPE in the model period.

5.4 Results from Implementing and Comparing Two-stage Methods vis-à-vis TBATS
in other Data sets

In Livera et al. [2011], TBATS was introduced with illustration on three datasets. We implemented and compared
the two-stage framework with TBATS for each of these data sets. As an illustration, in this subsection, we present
results from the call center data [Hyndman [2011]], which contains five-minute call volume on weekdays between
7:00 am and 9:05 pm, from March 3, 2003, to May 23, 2003 in a large North American commercial bank.

TBATS is implemented with two levels of seasonality – hourly and daily. For the two-stage framework, we
work with the average daily data in the first stage and exhaustively search for the best fitting model. Note that
since there is no information on additional covariates, and there are only two levels of seasonality, the benefit
of the two-stage method is naturally limited. In this context, regression simply accounts for a linear trend over
time. Using classical and polynomial methods, both additive and multiplicative seasonalities are estimated in
the second stage. Results in terms of the forecast evaluation in the model period (first 134 days) and hold-out
period (next 30 days) are provided in Table 14.
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Table 14: Forecast Evaluation for Call Center Data
Model period Hold-out period

Stage 1 Stage 2 MSE MAD MAPE MSE MAD MAPE

Regression

Classical additive 703.8 19.8 10.92% 642.0 19.7 12.86%
Classical multiplicative 679.4 19.4 10.74% 646.6 19.7 12.63%
Polynomial additive 970.4 24.1 14.50% 968.9 24.5 16.95%

Polynomial multiplicative 973.4 24.0 14.42% 983.7 24.7 16.88%

TBATS with weekly seas.

Classical additive 608.3 18.7 11.22% 521.7 17.3 11.42%
Classical multiplicative 546.6 17.3 9.97% 499.4 16.9 11.21%
Polynomial additive 875.0 23.0 14.34% 848.6 22.6 16.00%

Polynomial multiplicative 847.6 22.5 13.77% 836.8 22.4 15.69%

ARIMA

Classical additive 555.7 18.0 10.72% 529.7 17.5 11.61%
Classical multiplicative 488.9 16.7 9.63% 509.7 17.1 11.39%
Polynomial additive 822.3 22.3 13.99% 856.4 22.8 16.23%

Polynomial multiplicative 788.5 21.8 13.49% 845.4 22.5 15.87%

TBATS with 2 levels of Seasonality 260.4 12.3 7.27% 779.6 21.2 12.62%

Table 14 shows that while TBATS offers a better fit, the performance of many of the two-stage methods is
better in the test-period, even though the data context is not suited to derive fully the benefits of the two-stage
methods. Changing the duration of the model and forecast period does not critically alter this observation and
hence the corresponding results are not reported here.

5.5 Other Variations of Models and Methodology in the Two-stage Framework

5.5.1 Variation in Stage 1

In this study, we proposed to start the modeling in the second stage by working on Y − Ȳday or Y
Ȳday

, depending

on additive or multiplicative framework. A possible alternative would be to replace Ȳday by Ŷday, where the
latter is the estimate obtained in the first stage. Thus, one could estimate the high frequency multiplicative
seasonality by analyzing Y

Ŷday
. We tend to favor the former (as exhibited in this article), not just because it

would be computationally simpler (the data in the second stage would not be dependent on the method adopted
in first stage), but we think this is also more in line with our starting philosophy of level of separation in the
frequency. However, the alternative has its own appeal in terms of potentially working better with some data
sets.

5.5.2 Alternative Methods of Seasonality Estimation at High Frequency: Trigonometric Estima-
tion

In the aforementioned methods of estimating additive/multiplicative seasonality, the number of parameters to
be estimated is large, especially in the case of the classical decomposition-like method. For one-minute data,
with the classical method, we need 24 hourly values and 24 × 60 minute-level values to be estimated. Though
the polynomial curve fitting method alleviates this issue by bringing the number of parameters to be estimated
down to the order of the polynomial that is fitted, we tried yet another function-based approach to seasonality
estimation – trigonometric functions.

In this method, we use the fact that any periodic function can be represented as a sum of simple sine/cosine
waves. This sum is called Fourier series. We perform a Fast Fourier Transform (FFT) on the adjusted or residual
data, Ỹ = Y − Ylow or Ỹ = Y

Ylow
, depending on additive or multiplicative model (2) or (3). The FFT on Ỹ

returns a complex number for each frequency. Depending on the number of levels of seasonality in the data, we
pick the appropriate number of highest amplitude frequencies in the FFT output. Suppose, we need one cosine
function to represent Ỹ . Let a+ ib be the complex number associated with the highest amplitude frequency f0.

The cosine function is ˆ̃Yn =
√
a2 + b2 cos(2πf0n+ arctan( b

a )), where
√
a2 + b2 is the amplitude and arctan( b

a ) is
the phase.

The results of using this kind of trigonometric estimation of Shigh are similar to the polynomial method, and
are omitted for brevity.

6 Summary and Future Research

In this article, we proposed a two-stage framework which uses existing methods more efficiently to model and
forecast time series data with multiple levels of seasonality. The split between high and low frequencies ensures
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that the modeling and forecast is carried out very quickly and with satisfactory accuracy. As shown in Tables
2 – 8, the performance of the selected few two-stage methods is consistently satisfactory in absolute terms,
and relatively, better than TBATS in all these scenarios. Table 10 shows that the two-stage methods are way
ahead of TBATS in terms of computational speed when data has more levels of seasonality. Since the two-stage
methods take negligible amount of time in execution even for a very large time-series data set, recorded every
(few) minute(s), the forecast can be carried out in real time. The ability to use information from covariates
is another major advantage of this framework. Usage of all available information usually guarantees better
forecasts. Compared to existing methods, the two-stage method does not suffer from over-fitting and also does
not suffer from inconsistency. The predictions from the two-stage methods are typically more consistent when
compared with TBATS.

In a follow-up study, we will examine the impact of frequency on forecast accuracy. In particular, we will
examine whether data recorded at higher frequency leads to a better forecast accuracy. We will also examine
the impact of time of recording within a period on the forecast accuracy. Preliminary results were reported in
Lakshmanan and Das [2016].

For modeling and forecasting time series with complex, multiple seasonality, more challenges exist. Similar
to the trigonometric method to estimate seasonality, other ways could be incorporated. Nested seasonality can
also be exploited. The framework may also be expanded to include probabilistic forecasting [Hong et al. [2016]].
The research towards this is in a planning stage.

A package within R for the new two-stage framework would make it convenient to execute and possibly lead
to more practitioners and academicians adopting it. The work towards this is currently under way.
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present research. The second author would like to acknowledge the help rendered by Mr. Singh in terms of
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Appendix

I. Methods M13–M16 in Table 2 use ARIMA in the first stage of their two-stage implementations. In Table 15,
we provide the AIC values for different (p,d,q) values in the ARIMA with xreg function in R, that helps in model
selection. The seasonal ARMA orders (P,Q) are fixed to zero, both d and D vary between 0 and 1, while p and
q vary between 0 and 5. Based on the minimum AIC value in Table 15, the order is selected as (5,0,5) with
seasonal D = 1. The corresponding BIC values also point towards the same model, and hence we omit reporting
them for the sake of brevity.

Table 15: AIC Values for Seasonal ARIMA (p, d, q)× (0, D, 0) with xreg: New York Energy Load – Model Period
2008–13

q
p 0 1 2 3 4 5

d = 0, D = 0

0 32191.34 30304.7 29649.51 29492.63 29366.43 29090.76
1 29392.67 29205.2 29022.62 28951.58 28947.49 29068.94
2 29304.55 29161.03 28954.58 28951.47 28906.62 29034.46
3 29120.24 28961 28907.07 28906.61 28826.51 28535.22
4 29121.29 29098.56 28737.38 28722.91 28716.19 28830.26
5 28999.29 29082.85 28900.76 28795.46 28198.8 28573.76

d = 1, D = 0

0 29496.97 29399.31 29016.61 28942.83 28938.54 28895.68
1 29462.27 29302.21 28945.72 28942.61 28897.46 28840.41
2 29188.71 28952.93 28932.24 28901.22 28817.91 28525.58
3 29182.16 28950.62 28898.18 28838.05 28578.45 28583.45
4 29026 28823.42 28642 28390.49 28319.25 28232.83
5 28700.06 28689.43 28508.27 28301.33 28387.41 28307.57

d = 0, D = 1

0 25532.69 24625.64 24577.46 24555.3 24535.74 24487.81
1 24731.82 24559.65 24552.17 24545.09 24537.62 24525.24
2 24634.51 24543.61 24541.07 24460.81 24458.5 24003.24
3 24584.26 24543.79 24207.77 24108.34 24050.98 24092.13
4 24529.61 24542.32 24062.19 24053.88 24020.49 24386.44
5 24531.58 24527.57 24044.41 24053.94 24040.72 23976

d = 1, D = 1

0 25039.49 25039.71 24572 24548.58 24535.07 24528.97
1 25041.03 24928.1 24540.71 24539.39 24533.25 24530.89
2 24808.35 24808.23 24532.05 24525.88 24441.26 24096.3
3 24809.57 24809.32 24528.46 24206.39 24102.89 24042.42
4 24763.68 24496.43 24529.88 24044.2 24127.14 23987.8
5 24477.78 24434.42 24259.06 24003.93 24037.75 24008.76

II. In Table 16, we provide the TBATS parameters for the recursive forecasts in Section 4. The reported
parameters are Box-Cox transformation parameter ω, AR and MA orders (p, q), damping parameters η, in the
seasonality, the periodicities and the corresponding number of trigonometric components.
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Table 16: TBATS Parameters in Recursive Modeling: New York Energy Load
Forecast made on TBATS(ω, {p,q}, η, seasonalities)

01-Oct-09 TBATS(1, {5,5}, 0.951, {(12,1), (288,1), (2016,1), (105120,1)})
01-Jan-10 TBATS(1, {5,0}, 0.874, {(12,1), (288,1), (2016,1), (105120,1)})
01-Apr-10 TBATS(1, {4,2}, -, {(12,1), (288,1), (2016,1), (105120,1)})
01-Jul-10 TBATS(1, {4,3}, 1, {(12,1), (288,1), (2016,1), (105120,1)})
01-Oct-10 TBATS(0.358, {0,0}, 0.951, {(12,2), (288,5), (2016,6), (105120,6)})
01-Jan-11 TBATS(0.027, {0,0}, 0.959, {(12,2), (288,10), (2016,6), (105120,7)})
01-Apr-11 TBATS(0.034, {0,0}, 0.959, {(12,2), (288,7), (2016,5), (105120,6)})
01-Jul-11 TBATS(0.084, {0,0}, 0.957, {(12,2), (288,8), (2016,6), (105120,5)})
01-Oct-11 TBATS(0.002, {0,0}, 0.946, {(12,3), (288,6), (2016,6), (105120,6)})
01-Jan-12 TBATS(0.009, {0,0}, 0.954, {(12,2), (288,7), (2016,6), (105120,5)})
01-Apr-12 TBATS(0.26, {0,0}, 0.955, {(12,2), (288,7), (2016,6), (105120,6)})
01-Jul-12 TBATS(0.012, {5,2}, 0.969, {(12,3), (288,8), (2016,6), (105120,7)})
01-Oct-12 TBATS(0.351, {0,0}, 0.96, {(12,2), (288,6), (2016,5), (105120,8)})
01-Jan-13 TBATS(0.399, {0,0}, 0.955, {(12,3), (288,5), (2016,1), (105120,7)})
01-Apr-13 TBATS(0.451, {0,0}, 0.957, {(12,3), (288,6), (2016,5), (105120,7)})
01-Jul-13 TBATS(0.286, {0,0}, 0.947, {(12,3), (288,6), (2016,6), (105120,6)})
01-Oct-13 TBATS(0.068, {0,0}, 0.966, {(12,2), (288,9), (2016,5), (105120,7)})
01-Jan-14 TBATS(0.11, {0,0}, 0.95, {(12,3), (288,7), (2016,6), (105120,7)})

III. In Table 17, we present the regression coefficients for the recursive forecasts in Section 4. The best fitting
regression model varies in some iterations.
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