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Abstract

The problem of generating a cinema schedule for advertisement

to maximize gross OTS ( Opportunities-To-See ) attracted the

attention of media plan researchers. The development of a

cinema schedule so that desired Reach is achieved in each town

and the total cost of advertisement does not exceed a given

budget was formulated as a mathematical programming problem.

The problem has a linear objective function with nonlinear

constraints and integer variables, A heuristic procedure was

developed by researchers in the past to solve the problem. In

this paper a nested dynamic programming formulation is given

to obtain an optimal solution to the problem. The structure of

the optimal solution and solution procedure for a special case

is also discussed.

INTRODUCTION

As per Kotler [3]# the major decision problems that a product

advertiser encounters are :

a. determination of the media classes and the media

vehicles in a media class that could possibly be used

for conveying the message, and

b. determination of frequency with which each of the

potential vehicles are to be used during the advertising

campaign
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There are various measures of effectiveness of an

advertisement, like reach, gross opportunities-to-see (GOTS),

average cost per person reached etc •. In the past, researchers

developed models and given solution procedures to optimize the

effectiveness of an advertisement { see foe instance, [1},

[2]) . Sarla Achuthan [4], developed a model for cinema plan

that maximizes gross OTS for an entire region subject to a

budget constraint* The objective was to develop a cinema plan

that specifies the theatres where the advertisements are to be

screened and the number of weeks for which the advertisements

are to be screened in the chosen theatres. Sarla Achuthan [4]

developed a mathematical programming model to determine the

number of screening weeks in each theatre of the towns in a

region, which will maximize the gross OTS. The constraints

considered are, the total budget, achieving a specified

minimum rea6h in each town, and ensuring that in every town

the proportion of people who see the advertisement for at

least a pre-specified number of times is a proportion of the

maximum possible reach in that town. There are additional

lower and upper bound constraints on the number of screening

weeks in a theatre, if that theatre is chosen for screening.

This problem is shown to be equivalent to a integer LP problem

with a reduced set of constraints. This is based on the

observation that there is a lower bound on the total number of

screenings in a town below which the problem has no feasible

solution and this lower bound could be easily identified* The

equivalent problem has the same objective function as the

first problem. The constraints consist of total availability
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of budget, lower limits on the total number of screenings in

each town, and lower and upper bounds on the number of

screenings in the theatres chosen for screening in a town. As

the number of variables involved is large, the author

suggested a heuristic iterative procedure to arrive at a

solution to the problem. Empirical results were also

presented* In this paper, a nested dynamic programming

solution is given. Solution procedures for some special cases

are also discussed.

FORMULATION

The notation and mathematical formulations as given by Sarla

Achuthan [4] are given below:

Notation:

Let

N denote the number of towns in the region ;

M.) denote the number of potential theatres in j** town

j = 1,2,...,N t

R̂  denote the desired reach in j** town j = 1,2,...,N ;

Ck:) denote the cost of screening per week in the k** theatre

of j** town; j = 1,2, — ,N; k « 1,2,. •.,*!) ;

i denote the random variable representing the number of

visits to a theatre by a person in the target audience,

i = O/l,...,n:) ;

n̂  denote the maximum value that the random variable i takes

in the J** town ?



fAj denote the probability that a person in the target

audience makes xix visits to the theatres in the

j** town;

Uk) denote the upper bound on the screening weeks for the k**

theatre in the j1*1 town ;

D-5 denote the number in the target audience of the j** town;

L-j denote the lower bound of the screening weeks in a

theatre if that theatre is chosen. That is, if a theatre

is chosen, the advertisement should be screened for at

leat L-j weeks in that theatre of the j**1 town ;

C denote the total budget for the region.

DECISION VARIABLES:

WKi denote the number of screening weeks in the k** theatre of

the j**1 town, k = l,2,..«,Mj and j = l,2,...,N.

Wj denote the total number of screening weeks in the j1*

town,

W-j — S Wk;j
k=l

Th# mathematical formulation is

Problem PI:

subject to
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52M.-
• \

j*=l,2, ,2tf (3)

J = 1,2, . . . .,N (4)

where Ko is a pre-specified integer and p^^s are pre-specif ied

proportions•

^ < Uk, for all j#k (5)

Wki = 0 or Wk3 > L̂  (6)

Wk:)
 #s are all integers.

The objective function (1) is the expression for gross OTS

which needs to be maximized*

Inequality (2) represents the budget constraint. Inequality

(3) ensures that the desired reach is achieved in every town

of the region. Constraint (4) ensures that in every town the

proportion of the people who see the advertisement at least k

times is a proportion of maximum reach of that town.

Constraint (5) ensures an upper bound on the screening weeks.

Constraint (6) ensures that if a theatre is chosen, the

advertiisement should be screened for atleast some minimum

number of weeks.

It may be noted that the gross OTS depends only on the total

number of screenings in a town and not on the number of
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screenings in a particular theatre*

It is also noted that Reach R3 is a strictly monotonic

increasing function of the total number of screening weeks, W*

in town j. Also, the cost function is linear, additive,

separable and a monotonic increasing function of Wj • Using the

above, some special features of problem PI are exploited.

The solution set for reach (equation 3) and OTS (equation 4)

constraints can be determined by total screening weeks in that

town i.e., W/s. The lower bounds W$ for W3 can be determined

by the method of interval bisection.

We start with W^ * [ 52 M^ /2J. If the reach calculated for W3

is less than R3\ then increase W^ to [ 52 M3/2] + [52 MLj/4].

Depending on the values of reach, use W3 values in the left

interval or right interval. By this method we get the lower

bound on W^ which satisfies minimum reach and OTS constraints.

Noting that W^ « s wk:J , the solution to constraints (3) and
k=l

M,
(4) w i l l be of the form Wkj such tha t S Wfci > Ŵ  .

k=l

Then, the equivalent form of (PI) is

Problem P2:

Maximize
52AT,

subject to:

c*t"*J



S W^ > WJ for j = 1,2, • . . , N
k=l

Wkj > L̂  or Wk) = 0

An approximate solution method has been given by Sarla

Achuthan [4] when L̂  « L for all j. The method consists of an

iterative procedure• The value of W/s are obtained by using

the average cost of screening in a town* After getting the

values of W./s, the values for Wk:)# the number of screenings in

the individual theatres of a town are determined using the

following formulation:

Problem P3:

Minimize JJ g Ckjwkj

subject to:

k=l

Wkj = 0 or Wkj > L

W^'s are integers; k = l,2#».., M^, j = l,2,.«.,N

Wi
(1:> are the lower bounds on the total number of screenings in

j th town obtained at the t th iteration while solving problem

P2.

Problem (P3) is decomposed into N bounded knapsack problems.

The solutions for Wk:J are then used to arrive at the average

cost in the next iteration. The procedure stops when either

the minimum cost exceeds the budget given for the region or

the screening policy in two consecutive iterations remains the
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-same. The author also pointed out that this solution procedure

does not guarantee an optimal solution*

3* NESTED DYNAMIC PROGRAMMING APPROACH

As noted earlier, gross OTS depends only on the total number

of screenings in a town and not on the number of screenings in

individual theatres.

Problem P2 can now be considered as N sub-problems, one for

each town. Suppose B̂  is the amount available for allocation to

town j. Then, for town j # the sub problem is :

Problem P4:

Maximize ]P —£~ £>•
£1 52Wj

subject to:

Ckj Wkj * Bj

*»

Wkj Z Lj or WkJ = 0 ,k = 1,2, . . . ,Mj

i £<
OA = V ^ D-

= GOTS per screening in any theatre in town j
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Then the objective function of the sub problem is

Maximize Gj ]|P Wkj = Gj Max]j£ Wkj

Let fs(b) = Maximum number of screenings that are possible

using theatres 1 to s and using budget b;

1 < s < M-j and b = 0,1,2,••••,C«

The recursive equation is:

f f i + 1 (b) = Max { Ys+X,j 4- f s ( b - C s + 1 J Y ^ ) }

Ys+i,:) = 0 o r
Le+x,;, < Ys+X#3 < UB+X,3 and
C s + i , 3 YB+1^< b

with the initial condition fo(b) = 0 for b= 0,1,2, ••,• ,C.

If fMib) < Wj, then problem P2 is infeasible and

fM is set to -«>.

If jf̂  (1>) ̂  Wjg then the maximum value of

the subproblem is Gj fM(b).

Now, we solve the master problem for the region.

Suppose a is the amount available for allocation to towns 1 to

j* The recursive equation is:

Fj{a) = Max [fMj(Y)+Fj_x(a~Y)]

a = 0,1,2,....,C and j = 1,2,.•••,N with the initial

condition

F3(0) = 0 for j = 1,2,.-.,N and

FO(Y) = 0 for all Y.

The optimal objective function value for Problem PI is given

by FN(C).
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Solution procedure: For any given budget C, the optimal

soltion values Wki could be obtained by back tracking as is

done in any dynamic programming solution method.

4. PROPERTIES OF SUB PROBLEM SOLUTIONS

We now consider a special case where the optimal solution can

be found without using Dynamic Programming to solve the

sub problems. The master programme gives, for a total budget

for the region, the optimal budget allocation for each town.

For a given budget allocation for a town, we need to find the

maximum number of screenings possible in the theatres of the

town. If we can get for each town the relationship of the

total number of screenings in the town and the corresponding

minimum cost, then this relation could be used to find, for a

given budget allocation to a town, the optimum number of

screenings and their allocation to the theatres.

We consider some special properties of the solutions to the

sub problem.

For any town, the general formulation of the sub problem is

given below omitting the symbol j for town:

Let Yi = number of screenings in theatre i; i = 1,2,....,M.

Problem P5:
M

Minimize 2 Cx

subject to:
M
2 Yi = W

< U± ; i = 1,2, ,M
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YA > L± or 0 ; i = l f 2 , • . • • #M

Yi#s are i n t e g e r s

where
M : number of theatres in the town

U± : upper limit on the number of screenings in theatre i

Li : lower bound on the number of screenings in theatre
i# if chosen for screening

W : total number of screenings in all the theatres of
the town

We assume that

L * Li for all i = 1,2 ,M

and the theatres are numbered in increasing order of cost

i.e*, Cx < C2 < < CM.

We also assume that XJ± > L for all i.

Let { Yj; } be an optimal solution to Problem P5.

We prove the following properties of the optimal solution to

Problem P5.

Lemna 1: For atmost one i, the value of Y* will be strictly

between the lower and upper bounds i,*e., L < Yl < U*

for atmost one i.

Proof; Suppose for some i and j such that i < j ,

L < YJ < Ui and L < Y; < U^

Consider a new solution

Yk = Y£ for k t i or j

Y± = Y; + 1

y, = Y; - i

The new solution is feasible and the corresponding value of

the objective function will reduce from the optimum cost by
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( C} - CA ) > 0 which is not possible since { Y* } is optimal.

Hence # L < Yt < U^ for atmost one i.

Lemma 2: If yj * L for any i, then Y; » 0 or L for all j > i<

Proof: Suppose Y*x = I* and for some j > i, Ŷ  > L,

Consider a new solution,

Yk = Ŷ  for k | i or j

YA = L + 1

Y, - Y; - i

The new solution is feasible and the corresponding value of

the objective function will reduce from the optimum cost by

( Cj - CU ) > 0 which is not possible since { Y£ } is optimal•

Hence, YJ ~ 0 or L for j > i.

3: If Yt = 0, then for any j > i, Ŷ  ~ 0 or greater than

Proof: Suppose Yl = 0 and for some j > i, L < Ŷ  < Ui .

Consider the new solution

Yx * y* for k t i or j

YA - Y;

Y4 - 0

The new solution is feasible and the corresponding value of

the objective function will reduce by ( Ĉ  - Cx > Ŷ  , which is

not possible since { Y* } is optimal*

Hence Ŷ  - 0 or greater than Ui .

Remark 1: Lemmas 2 and 3 imply that if Y* = L and Ŷ  = L , then

for all k such that i < k < j , Y£ = L.
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From Lemmas 1,2 and 3, we get the structure of the optimal

solution { Y* } as:

Y; = 0 or U3 for 1 < j < k ... (8)

Y*k+1 will satisfy L < Y*k+1 < Uk+1 ... (9)

Y; = L for k+2 < j < t ... (10)

Y; = 0 for t+1 < j < M ... (11)

It is possible that one or more of the sets given in (8), (9)

or (10) could be empty. If Y} = 0 for any j in (8), then by

Lemma 3, set given in (10) will be empty.

We now consider a special case where the theatres are numbered

as per increasing order of costf and the upper bounds are non

increasing i.e., Cx < C2 < < CM and Ux > U2 > > UM .

For this special case, we prove the following Lemma, which

gives the structure of the optimal solution { Y£ } ,

t « 1,2,. ,M .

Lemma 4 : If Y2 = 0 then Y; = 0 for all j > i .

Proof: Suppose Ŷ  > L for some j > i .

Consider the new solution,

Yk = Yk f or k t i or j

Y± = Y;

Y, = 0

As U± > U-j and Y; < U3 , the solution is feasible. SincG C^ > Cx,

the optimum value of the objective function will reduce by

( Cj - Ci ) Yj > 0, which is not possible .

Hence Ŷ  = 0.
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Remark 2: From Lemma 4, we get the structure of the optimal

solution for this special case as

Y*k+i w i l l s a t i s f y L < Y*k+i ^ Uk+1 . . . (13)

Y; = L for k+2 < j < t . . . (14)

Y; = o for t + i < j < M . . . (15)

As in Remark 1, it is possible that one or more of the sets

(12), (13) and (14) could be empty.

We now state a procedure for finding the optimal solution and

show that this procedure gives the optimal solution.

Procedure for obtaining the optimal solution:

Obviously, if W < L , the problem is infeasible. So assume

that W > L.

Let k > 0 be the largest integer, and t be the smallest

integer greater than or equal to k+2 for which

k t
2 U± + Y*k+1 + 2 L = W (16)

i = l i=k+2
and L < Y*k+1 < U\+1

where W > L , is the total number of screenings in all
t

theatres of the selected town. The expression S L may not
i=k+2

exist.

The process of finding k and t involves a simple search

procedure. One such procedure is detailed below.

Step 1: Find j such that

j
W = 2 Ui + R where 0 < R < v^+x

i~l

If R = 0, set k - j - 1, Y\+i * Uk+1 and t does not

exist. Stop.
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If R > L, set k = j, Y*k+1 - R and t does not exist.

Stop.

If R < L, go to step 2.

Step 2: Set s = 0.

Step 3: Set s = s+1. Find j such that
j

W - s L = S Ui + R where 0 < R < U3+1
i=l

If R = 0, set k = j - 1, Y*K+1 = Ux+X , t = j+s. Stop.

If R > L, set k = j , Y\+x = R , t = k+s+1. Stop.

If R < L, go to step 4.

Step 4: Go to step 3.

Remark 3: If W - s L < 0 at any stage, then the problem has

no feasible solution.

Lemsta5: The procedure detailed above will yield the optimal

solution to problem P5.

Proof: Suppose, {Yv } is the optimal solution to P5. By

Remark 2, the structure of the optimal solution is

such that we can find values p and q such that

P q
2 Ui 4- Yp+i + S L = W ... (17)
i=l i=p+2

w h e r e L < Yp+1 < Up+X.
q

Note that S L may not exist.
i=p+2

Now# we consider 3 cases depending upon whether

p > k or p = k or p < k.

Case 1: p > k

This is not possible as by definition, k is the

largest integer which satisfies (16).
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Case 2: p = k

Then q cannot be less than t, as t is the smallest

integer which satisfies (16). Hence q > t.

If q > t, then (16) - (17) gives

Y\+1 + ( t -k-1) L - Yk+1 - (q-k-1) L = 0

i . e . Y*k+1 = Yk+1 + (q-k-1-t+k+l) L

= Yk+1 + (q-t) L

Substituting for Y*k+1 , the objective function value

for the problem given by (16) is

k t
S C± U± + Ck+1 ( Yk+1 + ( q - t ) L ) + L S C±

i = l i=k+2

k q q
= E C± U± + Ck+1 Yk+i + L S C± + L( 2 Ck+1 - C±

i = l i=k+2 i = t + l

k q
< S C± U± + Ck+1 Yk+1 + L S C±

i = l i=k+2

The last inequality is true as Ct < C-j for j>t.

i.e. the solution given in (17) is not optimal.

Hence q = t i.e. the proceckire leads to optimal

solution.

Case 3: p < k

There are two sub cases depending upon whether q < t

or q > t .

Case 3 .1 : q < t .

(16)-(17) gives

k
2 U4 + Y*k+1 - Yp+X + L (t -k-1) - L (q-p-1) = 0

i=p+l
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k
i.e. S U± + ( Up+1 - Yp+1 ) + Y\+1 + L ( t - q ) - L (k-p) - 0

i=p+2

k
i.e. S (Ui - L) + (U^ - Yp+1) + (Y\+i - L) + L (t-q) - 0

i=p+2

But since Ut > L, Y^ < T3^lt Y*k+1 > L, and q < t ,

the LHS i s greater than 0, which i s a contradiction.

Hence q > t .

Case 3 .2: q > t

Now, (16) - (17) gives

k
2 UA + Y\+1 - Y^ + L (t-k-1) - L (q-p-1) - 0

k
i.e. E U j + Y"K+l - Yp+r - L ( q - t ) - L (k-p) - 0

i

k
i.e. (U^ - Yp+1)+ S (Ut - L) + (Y%+1 - L) - L (q-t) (18)

i=p+2

The optimum cost corresponding to (17) i s
P t q
S Ci Ui + Cp+1 Yp+1 + L E d + L S Ci

i i2 it

p t
> S C, Ui + C ^ Y^ + L SCj + L (q-t ) Ct

p k t
2 Ct Ui +• C^i Yp+i + L S Ci + L ( 2 d )

i=k+l

k
+ Ct { (U^ - Y^J + S (Ut - L) + (Y\+1 _ L) }

i=p+2

(substituting for L(q-t) from (18))
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p

k k
2C1 + Ct(J

i=p+2

t
{ L Ck+1 + ( Y \ + 1 - L) C, } + L Z Cx

i = k + 2

P *
> S Ci U± + Cp+i Up+1 + I! Ci Oi + Ck+1 Y*K+i
i i

t
+ LSCj

i=k+2

The last: inequlity is true as C3 > C* for j > t#

Ui > L , Y V i ̂  Up+l and Y"k+a > L .

This is the objective function corresponding to (16).

This is not possible since (17) is optimal for P5.

Hence Lemma 5 is proved. •

If the theatres are numbered as per non increasing cost

i.e. C t ^ C a ^ .... < C M , then it is easy to show by a

similar procedure, that there exists an optimal solution

to Problem P5 with the structure as given in Remark 2.

The procedure detailed above will yield optimal solution

to the problem.

6. CONCLUSION

The mathematical formulation for arriving at an optimal cinema

schedule is complex but by nested Dynamic Programming , one

can arrive at the optimal schedule easily. In a special case,

the solutions to subproblems can be arrived at without using

dynamic programming algorithm.
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